
1

Next-Step: Tech Feasibility

Jett Koele
Benjamin Huntoon
Naima Ontiveros
Kendall Callison

Sponsored by:
Jack R Williams & Zachary Lerner

Mentored by:
Scott Larocca



2

2. Table of Contents

Next-Step: Tech Feasibility____________________________________________________ 1

2. Table of Contents________________________________________________________ 2

3. Introduction____________________________________________________________ 3

4. Technological Challenges__________________________________________________4

5. Technology Analysis______________________________________________________ 5

5.1 Desired Characteristics:__________________________________________________ 5

5.2 Game Development:_____________________________________________________6

5.3 Analysis:______________________________________________________________ 7

Criteria 1: Familiarity and Learning Curve____________________________________ 7

Criteria 2: Bluetooth Data Collection_________________________________________7

Criteria 3: Performance and Multimedia Support_______________________________ 7

5.4 Chosen approach:______________________________________________________ 8

5.5 Proving feasibility:_______________________________________________________9

6. Technology Integration___________________________________________________ 10

7. Conclusion____________________________________________________________ 12



3

3. Introduction

In the United States, over 7.5 million individuals face difficulty walking and engaging in
physical activity due to conditions that impair mobility. For these individuals, traditional
treatment approaches such as physical therapy (PT) and passive leg braces are commonly
prescribed. However, despite PT's potential benefits, maximizing the amount and effectiveness of
therapy can be challenging.

The Biomechatronics Lab at Northern Arizona University(NAU), led by Dr. Zachary
Lerner and Dr. Jack Williams, is working to address these challenges by developing a fully
open-source exoskeleton system known as OpenExo. The current system is designed to help
overcome barriers to the widespread use of wearable exoskeletons by making them more
accessible. OpenExo, combined with an open-source Python API, enables real-time operation
and assessment of the exoskeleton. Still, a key challenge remains: how to keep users engaged
during rehabilitation to ensure they get the maximum benefit from using the device.

Our capstone project focuses on addressing this engagement challenge. We aim to
develop a gamified rehabilitation training tool that interfaces with the OpenExo system through
its already-built Python API. This component we will add to the Python API will communicate
with Bluetooth sensors and built-in sensors to collect real-time data and provide interactive,
game-like feedback to patients as they use the exoskeleton for different exercises. By
transforming rehabilitation into an engaging experience, we hope to improve patient motivation
and enhance the overall effectiveness of therapy. To make the tool more accessible and
encourage collaboration, we are making it open-source. This will let developers, therapists, and
researchers customize and improve it to fit different rehabilitation needs. With an open-source
approach, we hope to build a community that keeps the tool innovative, flexible, and available to
everyone.

We are building on an existing program that was developed by the Biomechatronics Lab
at NAU to enhance its functionality for rehabilitation robotics applications. This includes
expanding the core modules, such as chart_data.py, exoData.py, exoDeviceManager.py,
exoTrial.py, openPythonApi.py, and realTimeProcessor.py. Additionally, we are integrating new
functionalities within the provided GUI.py and BioFeedback.py files to create a more
user-friendly interface and improve real-time biofeedback capabilities. Our goal is to create an
interactive tool that can support both research and practical applications in rehabilitation therapy.



4

In this Technological Feasibility Analysis, we will explore the main technological
challenges of the project, including integrating Bluetooth sensors, processing real-time data, and
building a gamified feedback system. We will analyze possible solutions and demonstrate the
feasibility of our approach, ensuring that our final product is effective, engaging, and useful for
any researcher working with wearable robotics.

4. Technological Challenges
Creating an open-source project is a challenge within itself. Thinking about all the

possible ways to develop and design software that is open-source and then narrowing it down to
fit the project can be a struggle. Some problems we have encountered are usability for users and
developers, any game getting inputs from the exoskeleton, expandability of the software, and
Bluetooth sensor support. These problems are all directly related to our open-source idea as we
constantly have to keep these in mind while developing our project.

With creating an open-source game controlled by rehabilitation prosthetics, there are
several technical challenges that must be addressed. First, we are not only developing games for
users but developing a platform for outside developers to also contribute games. With the project
being open source, we want to easily invite other developers to help give users new, unique
experiences. To do this, we will create scripts that standardize and present only the necessary
biometric data for controlling a game. On the user end, easy-to-navigate menus will allow you to
simply choose and play any downloaded games made for the program. The heart of this idea
being that with a standardized method of collecting user input, future developers can make a
wider variety of games for users to play while they engage with their exercises. Ideally, this
would add a “plug and play” aspect to the games users can play while wearing the brace as
opposed to a single game, keeping the rehabilitation process engaging and exciting.

When creating the actual games, our team must look at a few different challenges. To
start we must compare and contrast different Python libraries, such as Pygame and Pyglet, in
order to find the most suitable fit for us. The libraries must provide adequate support for
rendering graphics, handling game mechanics, and ensuring smooth gameplay for the user.

Like any other video game, we must consider all possible game states and logic. Using a
standardized system for "Start", "Pause", and "End" will help us and other developers create a
more desirable user experience. One of the largest contributors to user experience is the game's
logic, or how the user interacts with the game's environment. This aspect is key to making the
games fun and rewarding for those using it. The back-end involves having a standardized control
system that reacts to real-time data from the Bluetooth sensors. This will involve ensuring that
games respond dynamically to user inputs and sensor data without causing delays or crashes. On
the front-end, the user interface must provide intuitive immediate feedback to players based on
sensor input. This means that Python libraries must support real-time data handling, ensuring that
any game event tied to rehabilitation movements reflects immediately in the game.

Finally, the game itself must put the user’s rehabilitation first as the primary experience
before the game. While our project is to develop an engaging experience for the user, our game
must never take away from the prescribed exercises and we must therefore develop around that



5

concept. Moreover, the games should center on the specific exercises users will have to perform.
These exercises are created by us developers but will allow the user to set unique goals for
themselves, ensuring they can be used on anyone's path to rehabilitation.

5. Technology Analysis
We need to develop a game for a rehabilitation brace so that wearers will be more

engaged with their rehabilitative therapy. The game should help make the exercises motivating
by including rewards and challenges. The game also needs to be adjustable to different types of
exoskeleton devices so that it works for a variety of treatments.

Use Case Diagram for Rehabilitation Game

It shows how the patient, therapist, and exoskeleton device interact to run the game, provide
feedback, and track progress.

5.1 Desired Characteristics:
Our project will be built upon the existing code to implement a game a user can play

while wearing the leg brace for rehabilitation exercises. The largest request from the clients was
to ensure that the game remains open source as the entire mission of the biomechatronics lab at
NAU is to create an open-source form of mechanized rehabilitation for people in need. Our game
should focus specifically on the leg braces, however, the game should be able to be configured
with different settings to support various types of devices designed for different parts of the



6

body. The game should run smoothly and without delay while engaging the user for the duration
of their exercise. This aspect of the project is critical to ensure that while the user is engaged they
are not distracted by poor game performance while they work on their exercises. Finally, the
game should be easy to maintain and adjust to each user. We want to ensure that after we have
created our project, future developers are not bogged down by trying to decipher what we have
implemented and we want to make sure that if the researchers would like to make certain tweaks
to the code that modification of the game should be quick and easy.

5.2 Game Development:

In terms of game development, we were looking at using:
Pygame:

It is a Python library for building simple 2D games. It helps developers easily manage
graphics, sound, and user input, making game development beginner-friendly. Pygame focuses
on keeping things simple while giving developers control over their code.

Pyglet:
Pyglet is another Python library designed for building games and multimedia

applications. It supports both 2D and lightweight 3D development. It has features such as
OpenGL graphics, sound, and video playback. Pyglet is fully cross-platform and requires no
external dependencies, which makes it better for performance-focused projects.

Unity:
Unity is a game engine that will make it easy for game developers to design and develop

games for the future of this project. Generally speaking, it is able to do all of the previously
mentioned features and more since it is such a big and very well-sourced game engine. The only
limitation would be the computer the game would be running on since hardware-demanding
games can be developed and designed on this platform. The main issue with this direction is to
simulate a controller input using feedback from the exoskeleton as an input.

GUI:
In our current project, Tkinter is being used to manage the Graphical User Interface

(GUI), particularly in BioFeedback.py. As we move forward, we plan to build on this existing
code and use Tkinter with the game we are developing. Tkinter is a built-in Python library that
helps us create windows, buttons, labels, text boxes, and other simple interfaces. It’s essentially a
control panel to our program that users can click on or interact with.



7

5.3 Analysis:
We decided on implementing a “Wario-ware” style game of a few minigames meant to

engage the user. The minimum viable project would include one game of good detail while a
better game would include multiple types of games to play. In terms of development, we don’t
have a lot of experience with game development and agreed we need to familiarize ourselves
with the libraries. BLEAK will also be used to collect data from the Bluetooth sensors from the
brace.

We used a few different criteria to evaluate and compare the alternatives. These include
familiarity and learning curve, Bluetooth data collection compatibility, and performance and
multimedia support.

Criteria 1: Familiarity and Learning Curve

● Evaluation: Since we’re new to game development, we focused on libraries that are easy
to learn.

○ Pygame: Beginner-friendly with lots of tutorials and community help.
○ Pyglet: Faster but harder to learn, which could slow us down.
○ Unity: Powerful but takes time to master due to its complexity.

Conclusion: We prefer Pygame because it is easier to learn with our limited time.

Criteria 2: Bluetooth Data Collection

● Evaluation: We need to use BLEAK to collect data from Bluetooth sensors on the rehab
brace.

○ Pygame and Pyglet work well with Python libraries like BLEAK.
○ Unity would be harder to set up for Bluetooth since it’s a different platform.

Conclusion: Pygame and Pyglet are better options because they easily support BLEAK
integration.

Criteria 3: Performance and Multimedia Support

● Evaluation:
○ Pyglet: Faster and supports OpenGL, good for games with high performance and

multimedia needs.
○ Pygame: Slightly slower but still works well for simple 2D games.
○ Unity: Great for big 3D games, but overkill for our small minigames.

Conclusion: If we need higher performance, Pyglet is the better choice, but Pygame is still good
for our 2D minigames.



8

5.4 Chosen approach:
For our project, we opted to choose PyGame as our chosen game development library.

While Pyglet is faster and offers more GUI elements, a core component of our project is keeping
code open source and easy to understand. This means that PyGame’s ease of use is a key factor
in our decision and it is easy to incorporate within our project. The largest drawback of this
decision is that we will have to rework the way the existing GUI is handled within the existing
code as PyGame is not compatible with that aspect of the project currently. Picking the chosen
game library is the central decision with regard to our project as other Python libraries like
tkinter and BLEAK are already present within the code and must therefore be incorporated into
the future project as we begin game development.

Overall, Pygame offers a better approach for developing the rehabilitation game due to its
simplicity and user-friendly nature. Its straightforward API allows for quick development,
making it easier to focus on core game mechanics and integration with the exoskeleton device.
Compared to more complex game engines like Unity, Pygame provides a more manageable
learning curve, which is advantageous for our team, given our limited experience with game
development in Python. Additionally, Pygame’s compatibility with Python libraries (such as
Tkinter for the GUI and biofeedback charts) ensures that development remains efficient and free
from unnecessary overhead.

Comparison of Game Libraries

Pyglet Pygame Unity

Pyglet is much faster as
compared to

Pygame⭐⭐⭐⭐⭐

Pygame is slower as
compared to Pyglet⭐⭐⭐

Highly optimized for
complex projects
⭐⭐⭐⭐⭐

Pyglet uses
OpenGL⭐⭐⭐⭐⭐

Pygame uses SDL libraries
and does not require
OpenGL⭐⭐⭐

Uses a custom, advanced
rendering engine based on
OpenGL/DirectX/Vulkan
⭐⭐⭐⭐⭐

It is rich with GUI GUI using Pygame is not Extensive GUI capabilities



9

elements⭐⭐⭐⭐ compatible⭐⭐⭐ with native tools
⭐⭐⭐⭐⭐

3D projects are supported in
Pyglet⭐⭐⭐

Only 2D projects are
supported
⭐⭐⭐⭐

Full 3D project support and
physics engine
⭐⭐⭐⭐⭐

Pyglet supports music, video,
and images in all

formats⭐⭐⭐⭐⭐

Pygame supports a few
formats
⭐⭐⭐

Supports all major
multimedia formats
⭐⭐⭐⭐⭐

No external installation
requirements
⭐⭐⭐⭐⭐

Few module installations are
required
⭐⭐⭐⭐

Requires Unity Hub and
external dependencies

⭐⭐⭐

Not beginner friendly
⭐⭐

Very beginner-friendly and
easier to implement
⭐⭐⭐⭐⭐

More complex, suitable for
large projects⭐⭐⭐

As shown above in the table we listed each major pro and con between the three
development engines and ranked each aspect. From these sub-rankings, we then gave each
engine an overall ranking based on what we thought would make game development the most
efficient for our project. To make each ranking we voted on how many stars each subcategory
got between the engines and then decided as a group which library we preferred overall.
Although Pyglet outranked Pygame overall, we did not need all the extra features Pyglet
provided to begin with. All in all, after taking in all the pros and cons, we decided on mostly
developing within Unity. The Unity engine is able to produce faster and more intensive
experiences, while also providing all graphical displays right out of the box.

Since we are only building a simple 2D game, all the other overhead is unnecessary and it
is much more efficient to choose a library that everyone can use right away since it is more
beginner-friendly.

Although we have picked out our game engine of choice, other developers might want
differently. Thus, using the python library vGamepad, we can allow for interaction across almost
all video game engines. Our approach invisions scaling the raw exoskeleton data into gamepad
button inputs. Using vGamepad, one is able to create a virtual gamepad that mimics a real
gamepad device. We are then able to use the transformed exoskeleton data as real time input for
the virtual gamepad. Since almost all game engines contain built in controller/gamepad support,
game development for the exoskeleton can take place on almost any platform.

5.5 Proving feasibility:
To prove feasibility we have begun to create diagrams to illustrate where our project will

sit within the existing code. We are working on a package diagram as well as a flow control



10

diagram to illustrate the layout and overall data passage when a user is using the brace for
rehabilitation.

Our immediate plans for testing and validating our design choices will include designing
smaller “walking-based” games meant to encourage the user to move around. Some initial ideas
we have discussed were a hiking-based game or a delivery-based game where the user must walk
to a location to deliver an item to win the game. The core idea behind these games is they allow
the user to engage with the rehabilitation exercises while also allowing researchers the ability to
collect valuable data on the users as they exercise. To create a demo game, we intend on creating
simulated data meant to mimic the biofeedback a real brace would put out as a user moves
around. This would allow us to collect input for our game so we can simulate a real user
experience.

6. Technology Integration

Exoskeleton Brace Collects and transmits movement data for the
user, providing real-time feedback to guide
rehabilitation exercises.

Bleak Python Library Handles Bluetooth low-energy connections to
ensure seamless communication between the
brace and the game software. This will allow
us to track the user’s movements in real time
and translate them into gameplay.

Pygame Library A versatile game development library for
Python that will enable us to create engaging
visuals, sound effects, and smooth gameplay.
It also provides tools to build interactive
elements, such as timers and score counters,
which will enhance the user's experience.

Python Serves as the primary programming language,
helping us integrate various components and
libraries. Python’s simplicity and versatility



11

will make it easier to prototype, test, and
iterate on new ideas.

vGamepad
A python library that serves as
communication between the exoskeleton
brace and the games created for it. This
allows us to simulate a real gamepad within
python. In turn, allowing game development
on any engine. Unity, PyGame, etc.

We are building on an existing program developed by the Biomechatronics Lab at NAU,
integrating new features that align seamlessly with the established architecture. The foundational
files—such as chart_data.py, exoData.py, exoDeviceManager.py, exoTrial.py, openPythonApi.py,
and realTimeProcessor.py—provide the core structure for handling data, managing devices, and
processing real-time feedback. Our additions in GUI.py and BioFeedback.py build on these
components to enhance user interaction and biofeedback capabilities.

By incorporating Bleak for Bluetooth communication, Pygame for game development,
Python as the main language, and vGamepad for virtual controller integration, we ensure that our
solution smoothly connects the hardware (exoskeleton brace) with the game software. This setup
allows for real-time data flow, accurate feedback, and an immersive, therapeutic experience, all
while preserving and expanding upon the existing architecture.



12

7. Conclusion
This project will require a good amount of experience with game development. Once we

get familiar with the libraries we need we can begin discussing software architecture and game
concepts to work towards implementing. Our project is built upon existing code and will not
need to replace any of the existing code to the best of our knowledge. The game or games we
develop will focus on leg movements, but will ideally be usable with other kinds of braces meant
for rehabilitation.

Rehabilitation games are essential to help users stay motivated and stick with their
therapy. In this project, we’ve planned to build on existing code by adding new mechanics to
promote leg movement, while keeping the games flexible enough for other types of braces.
We’ve also highlighted the importance of learning the tools, planning the structure, and using
feedback to improve the experience.

Next, we’ll focus on building prototypes, testing them, and making adjustments to ensure
the games are both useful and enjoyable. With a clear plan in place, we’re confident this project
will deliver meaningful results and help users on their rehabilitation journey.


